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Abstract. We study the asymptotic dynamics of a driven spin-boson system where the environment is
formed by a broadened localized mode. Upon exploiting an exact mapping, an equivalent formulation of
the problem in terms of a quantum two-state system (qubit) coupled to a harmonic oscillator which is itself
Ohmically damped, is found. We calculate the asymptotic population difference of the two states in two
complementary parameter regimes. For weak damping and low temperature, a perturbative Floquet-Born-
Markovian master equation for the qubit-oscillator system can be solved. We find multi-photon resonances
corresponding to transitions in the coupled quantum system and calculate their line-shape analytically.
In the complementary parameter regime of strong damping and/or high temperatures, non-perturbative
real-time path integral techniques yield analytic results for the resonance line shape. In both regimes, we
find very good agreement with exact results obtained from a numerical real-time path-integral approach.
Finally, we show for the case of strong detuning between qubit and oscillator that the width of the n-photon
resonance scales with the nth Bessel function of the driving strength in the weak-damping regime.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 03.67.Lx Quantum
computation – 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects –
42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes;
dynamic Stark shift

1 Introduction

Currently, we witness an impressive progress in realizing
coherent quantum dynamics of macroscopic solid state
devices [1–5]. Very recently, experimental results on the
quantum dynamics of a superconducting flux qubit cou-
pled to a read-out SQUID have been reported [6]. The
flux qubit consists of a superconducting ring with three
Josephson junctions and, in the proper parameter regime,
it forms a quantum mechanical macroscopic two-state sys-
tem (TSS). An external time-dependent driving force con-
trols the state of the TSS. A SQUID couples inductively
to the qubit and, together with an external shunt capac-
itance, it can be modeled as a harmonic oscillator (HO).
Due to the coupling of the SQUID to the surrounding en-
vironment, the harmonic oscillator is (weakly) damped.
The state of the qubit can be inferred from the state of
the SQUID. The experiment provides spectroscopic data
on the different transition frequencies of the coupled TSS-
HO device. Moreover, Rabi oscillations involving different
pairs of quantum states of the device have been revealed,
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including the so-termed red and blue sideband transitions
between energy states of the coupled TSS-HO system.

Heading for a comprehensive detailed understanding,
a quantitative modeling which includes the effects of
time-dependent driving, decoherence and dissipation is
required. Our description goes beyond the well-known
Jaynes-Cummings model [7], by avoiding the strong
rotating-wave approximation and by including a micro-
scopic model for the environment. A generic theoretical
model for studying the environmental effects on a driven
TSS is the driven spin-boson model [8,9] where the TSS
tunneling splitting is denoted by ∆. The environment is
characterized by a spectral density J(ω). The widest used
form is that of an Ohmic spectral density, where J(ω) is
proportional to the frequency ω. It mimics the effects of an
unstructured Ohmic electromagnetic environment. In the
classical limit this leads to white noise and all transitions
in the system are damped equally. However, if the environ-
ment for the qubit is formed by a quantum measuring de-
vice which itself is damped by Ohmic fluctuations, the sim-
ple description as an Ohmic environment might become
inappropriate. In particular, the SQUID-detector being
well described as a HO can equally well be considered
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as a (broadened) localized mode of the environment in-
fluencing the qubit as the central quantum system. In
this picture, the plasma resonance at frequency Ωp of the
SQUID gives rise to a non-Ohmic effective spectral den-
sity Jeff(ω) for the qubit with a Lorentzian peak at the
plasma frequency of the detector [10].

The effects of such a structured spectral density on
decoherence have been investigated in several theoretical
works in various limits. The role of the external driv-
ing being in resonance with the symmetric TSS at zero
temperature has been studied in reference [11] within a
Bloch-Redfield formalism being equivalent to a perturba-
tive approach in Jeff . Smirnov’s analysis [12] is based on
the assumption of weak interaction between the TSS and
the HO being equivalent to a perturbative approach in
Jeff as well. Moreover, a rotating-wave approximation is
used. The first assumption, however, might become prob-
lematic if the driven TSS is in resonance with the HO.
The results presented in references [13,14] reveal in fact,
for the undriven case, that a perturbative approach in Jeff

breaks down for strong qubit-detector coupling, and when
the qubit and detector frequencies are comparable. De-
phasing times at zero temperature have been determined
for the undriven spin-boson model with a structured envi-
ronment in reference [15] within a numerical flow equation
method.

The interplay between the external driving and the
dynamics of the coupled TSS-HO system yields to addi-
tional multi-photon transitions, which can be explained
only by considering the spectrum of the coupled system.
These resonances have recently been observed experimen-
tally [6]. If the time-scale of the HO does not play a role,
the multi-photon resonances occur in the driven qubit
solely, which happens when the driving frequency (or in-
teger multiples of it) matches the characteristic energy
scales of the qubit [9]. Such multiphoton resonances can
be experimentally detected in an ac-driven flux qubit by
measuring the asymptotic occupation probabilities of the
qubit, as the dc-field is varied [16]. In these experiments
the resonances were obtained by matching the frequency
of the ac-field with the qubit energy levels only, where the
detector energy levels did not play a role. These qubit res-
onances, which have also been theoretically investigated
within a Bloch equation formalism in reference [17], could
be explained in terms of intrinsic transitions in a driven
spin-boson system with an unstructured environment.

In this paper, we provide a comprehensive theoretical
description of the driven spin-boson system in the pres-
ence of a structured environment with one localized mode.
Upon making use of the equivalence of this generic model
with the model of a driven TSS coupled to an Ohmically
damped HO, we first consider the experimentally most
interesting case of low temperature and weak damping of
the HO while the coupling between the TSS and the HO
is kept arbitrary. In this regime, a Floquet-Born-Markov
master equation can be established for the driven TSS-
HO system. A restriction to the most relevant energy
states allows the analytic calculation of the asymptotic
TSS time-averaged population P∞, including the explicit

shape of the resonance peaks and dips. We furthermore
consider the case of strong damping and/or high temper-
ature which is the complementary parameter regime. An
analytic real-time path-integral approach within the non-
interacting blip approximation for the driven TSS with the
Lorentzian-shaped spectral density allows to analytically
determine P∞ as well. We compare the results obtained
from closed analytic expressions with those of numeri-
cally exact real-time QUAPI calculations in both param-
eter regimes and find a very good agreement validating
our analytical approaches. Finally, we consider the weakly
damped TSS with the localized mode in the limit of large
HO frequencies. Then, the localized mode acts as a high-
frequency cutoff and the usual Ohmically damped driven
TSS is recovered. For this case, we employ an approxi-
mation valid for large driving frequencies and obtain a
simple expression for the resonance line shapes for multi-
photon transitions. Most importantly, we find that the
width of the n-photon resonance scales with the nth ordi-
nary Bessel function. Parts of our results have been pub-
lished in a short work in reference [18].

The paper is organized as follows: In Section 2, we
present the theoretical model. Then, we treat the regime
of weak damping and low temperatures in Section 3. The
complementary regime of strong damping is investigated
in Section 4. The subsequent Section 5 contains the limit
when the localized mode provides a high-frequency cut-off
for the bath, and Section 6 the discussion of the results and
the conclusions. Details of the specific evaluation of rate
coefficients are presented in Appendix A. In Appendix B
an expansion used in the strong coupling regime is elabo-
rated in detail.

2 The driven qubit coupled to a macroscopic
detector

The driven TSS is described by the Hamiltonian

HQ(t) = −�∆

2
σx − �ε(t)

2
σz , (1)

where σi are Pauli matrices, �∆ is the tunnel splitting,
and ε(t) = ε0 + s cos(Ωt) describes the combined effects
of a time-dependent driving and the static bias ε0. In the
absence of ac-driving (s = 0), the level splitting of the
isolated TSS is given by

�ν = �

√
ε20 +∆2. (2)

The detector can be associated as part of the TSS envi-
ronment as a localized mode. This gives the spin-boson
Hamiltonian HSB reading [8,9,11–15]

HSB(t) = HQ(t) +
1
2
σz�

∑
k

λ̃k(b̃†k + b̃k) +
∑

k

�ω̃kb̃
†
k b̃k.

(3)
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Here b̃k and b̃†k are annihilation and creation operators of
the kth bath mode with frequency ω̃k. The presence of
the detector determines the shape of the spectral density.
Following reference [10], the dc-SQUID can be modeled
as an effective inductance which is shunted with an on-
chip capacitance. This gives rise to the effective spectral
density

Jeff(ω) =
∑

k

λ̃2
kδ(ω − ω̃k)

=
2αωΩ4

p

(Ω2
p − ω2)2 + (2πκωΩp)2

(4)

of the bath having a Lorentzian peak of width γ = 2πκΩp

at the characteristic detector frequency Ωp. It behaves
Ohmically at low frequencies with the dimensionless cou-
pling strength α = limω→0 Jeff(ω)/2ω. The qubit dy-
namics is described by the reduced density operator ρ(t)
obtained by tracing out the bath degrees of freedom. The
relevant observable which corresponds to the experimen-
tally measured switching probability of the SQUID bias
current is the population difference P (t) := 〈σz〉(t) =
tr[ρ(t)σz ] between the two localized states of the qubit. We
focus on the asymptotic value averaged over one period of
the external driving field, i.e., P∞ = limt→∞〈P (t)〉Ω .

In the following, it will become clear that it is conve-
nient to exploit the exact one-to-one mapping [19] of the
Hamiltonian (3) onto that of a driven TSS coupled to a
single harmonic oscillator mode with frequency Ωp with
interaction strength g. The HO itself interacts with a set
of mutually non-interacting harmonic oscillators. The cor-
responding total Hamiltonian is then

HQOB(t) = HQO(t) +HOB (5)

with

HQO(t) = HQ(t) + �gσz(B† +B) + �ΩpB
†B,

HOB = (B† +B)
∑

k

�νk(b†k + bk) +
∑

k

�ωkb
†
kbk

+ (B† +B)2
∑

k

�
ν2

k

ωk
, (6)

where we have omitted the zero-point constant energy
terms. Here, B and B† are the annihilation and creation
operators of the localized HO mode, while bk and b†k are
the corresponding bath mode operators. The spectral den-
sity of the continuous bath modes is now Ohmic with di-
mensionless damping strength κ, i.e.,

JOhm(ω) =
∑

k

ν2
kδ(ω − ωk) = κω

ω2
D

ω2 + ω2
D

, (7)

where we have introduced a high-frequency Drude cut-off
at frequency ωD. If ωD is larger than all other energy scales
the particular choice of cut-off does not influence the re-
sults at long times. The relation between g and α follows
as g = Ωp

√
α/(8κ). Figure 1 illustrates a sketch of the two

Fig. 1. Schematic picture of the models we use. In (a) the
TSS is coupled to an environment which has a peaked spectral
density Jeff(ω). In (b) the system is shown as a two-level system
coupled to a harmonic oscillator which is itself coupled to an
Ohmic environment with spectral density JOhm(ω) .

equivalent descriptions of the system. Figure 1a shows the
viewpoint where the localized mode is part of the environ-
mental modes, while Figure 1b depicts the perspective of
the localized mode being part of the “central” quantum
system which itself is coupled to an Ohmic environment.
The equivalence of both standpoints has first been pointed
out by Garg et al. [19] in the context of electron transfer in
chemical physics. As shown below, the first way is more
convenient for the description in terms of analytic real-
time path-integrals (Sect. 4), while the second viewpoint
is more appropriate for the regime of weak-coupling and
for the numeric treatment with QUAPI (see below). Note
that the TSS reduced density operator ρ(t) is obtained af-
ter tracing out the degrees of freedom of the bath and of
the HO. Further progress relies on approximations which
depend on the choice of the various parameters.

3 Weak coupling: Floquet-Born-Markov
master equation

If the coupling between the HO and the bath is weak, i.e.,
κ � 1 , we can choose an approach in terms of a Born-
Markov master equation in an extended Floquet descrip-
tion [9,20,21]. For a self-contained discussion, we shortly
introduce below the required formalism of the Floquet the-
ory. The interested reader can find more details in the
review in reference [9].

3.1 Floquet formalism and Floquet-Born-Markovian
master equation

For systems with periodic driving it is convenient to use
the Floquet formalism that allows to treat periodic forces
of arbitrary strength and frequency [20]. It is based on
the fact that the eigenstates of a periodic Hamiltonian
HQO(t) = HQO(t+ 2π/Ω) are of the form

|ψ(t)〉 = e−iεαt/�|φα(t)〉,
|φα(t)〉 = |φα(t+ 2π/Ω)〉, (8)
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with the Floquet states |φα(t)〉 being periodic in time
(as is the Hamiltonian) and εα are called the Floquet or
quasi-energies. They can be obtained from the eigenvalue
equation

(
HQO(t) − i�

∂

∂t

)
|φα(t)〉 = εα|φα(t)〉. (9)

If the quasi-energy εα is an eigenvalue with Floquet
state |φα(t)〉, so is εα + n�Ω with Floquet state
exp (inΩt)|φα(t)〉. Both Floquet states correspond to the
same physical state. Because of their periodicity both the
Floquet states and the Hamiltonian can be written as a
Fourier series, i.e.,

|φα(t)〉 =
∑

n

|φ(n)
α 〉 exp (inΩt),

HQO(t) =
∑

n

H
(n)
QO exp (inΩt). (10)

Substituting these Fourier decompositions in the eigen-
value equation (9) gives [22]

∑
k

(H(n−k)
QO + n�Ωδkn)φ(k)

α = εαφ
(n)
α . (11)

This allows us to define the Floquet Hamiltonian HQO ≡
HQO(t) − i� ∂

∂t in matrix form with the matrix elements

〈an|HQO|bm〉 = (H(n−m)
QO )ab + n�Ωδabδnm. (12)

In the notation |an〉, a refers to a basis in which to express
the Hamiltonian HQO(t), while n refers to the Fourier co-
efficient. The eigenvectors of HQO are the coefficients φ(n)

α .
The dynamics of the system coupled to a harmonic

bath is conveniently described by an equation of motion
for the density matrix ρ. Driving effects can be captured
in an elegant way by formulating the equation of motion
in the basis of Floquet states defined in equation (8). For
weak coupling to the environment, it is sufficient to in-
clude dissipative effects to lowest order in κ. Within this
approximation, a Floquet-Born-Markov master equation
has been established [9,20,21]. We average the 2π/Ω-
periodic coefficients of the master equation over one pe-
riod of the driving, assuming that dissipative effects are
relevant only on timescales much larger than 2π/Ω. This
yields equations of motion for the reduced density matrix
ραβ(t) = 〈φα(t)|ρ(t)|φβ(t)〉 of the form

ρ̇αβ(t) = − i

�
(εα − εβ)ραβ(t) +

∑
α′β′

Lαβ,α′β′ρα′β′(t), (13)

with the dissipative transition rates

Lαβ,α′β′ =
∑

n

(Nαα′,n +Nββ′,n)Xαα′,nXβ′β,−n

− δββ′
∑
β′′,n

Nβ′′α′,nXαβ′′,−nXβ′′α′,n

− δαα′
∑
α′′,n

Nα′′β′,nXβ′α′′,−nXα′′β,n. (14)

Here, we have defined

Xαβ,n =
∑

k

〈φ(k)
α |B +B†|φ(k+n)

β 〉,

Nαβ,n = N(εα − εβ + n�Ω),

N(ε) =
κε

2�

(
coth

(
ε

2kBT

)
− 1
)
. (15)

We have neglected the weak quasi-energy shifts, which are
of first order in the coupling to the environment. In the
sequel, we will see from a comparison with exact numerical
results that this approximation is well justified. In order to
be able to solve equation (13), it is necessary to determine
the Floquet quasi-energies εα and Floquet states |φ(n)

α 〉.
How they can be determined perturbatively, is shown in
the following subsection.

3.2 Van Vleck perturbation theory

First, we have to specify the basis for the Floquet Hamilto-
nian according to equation (12). For the TSS+HO Hamil-
tonian HQO, we use the basis |an〉 defined via the single
particle product state |a〉 = |g/em〉 with |g/e〉 being the
ground/excited state of the qubit, |m〉 the HO eigenstate,
and n the corresponding Fourier index. In detail, this im-
plies that we can divide the Hamiltonian into a diagonal
part

(HQO)gmn,gmn = �[−ν/2 +mΩp + nΩ],

(HQO)emn,emn = �[ν/2 +mΩp + nΩ], (16)

and an off-diagonal part

(HQO)an,bk = Van,bk, for a �= b, n �= k, (17)

which has non-zero elements. They read

Vg(e)ln,g(e)mn = +(−)
(
√
m+1δl,m+1+

√
l+1δl+1,m)�gε0

ν
,

Vg(e)ln,e(g)mn = − (
√
m+ 1δl,m+1 +

√
l + 1δl+1,m)�g∆

ν
,

Vg(e)mn,g(e)mk = −(+)
(δk,n+1 + δk+1,n)�sε0

4ν
,

Vg(e)mn,e(g)mk =
(δk,n+1 + δk+1,n)�s∆

4ν
. (18)

In the remainder of this section we will assume that the
elements of V are small compared to the diagonal ele-
ments of HQO, which is justified if the coupling g between
TSS and HO and the driving amplitude s are small com-
pared to the other energy scales, i.e., s, g � Ω, ν,Ωp. This
is the case in realistic experimental devices [6,13]. The
Fourier index n ranges from −∞ to ∞ and m from 0 to
∞. The eigenvalues of the Floquet Hamiltonian following
from equations (17) and (18) have to be calculated numer-
ically for a particular cut-off nmax and mmax. In Figure 2,
the numerically obtained quasi-energy spectrum is shown
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Fig. 2. Left: Quasi-energy spectrum εα,k of the driven
TSS+HO system vs. dc-bias ε0 (in units of ∆). The quasi-
energies are defined up to an integer multiple of �Ω, i.e.,
εα,k = εα+k�Ω. Inset: Zoom of an anti-crossing. Right: P∞ ex-
hibits resonance dips corresponding to quasi-energy level anti-
crossings. Parameters are Ω = 10∆, s = 4∆, g = 0.4∆, Ωp =
4∆, κ = 0.014 and kBT = 0.1�∆.

as a function of the static bias ε0 for the case mmax = 4
and |nmax| = 8. We find that for some values of the bias ε0
avoided crossings of the quasienergy levels occur when two
diagonal elements of HQO have approximately the same
values, i.e., when the condition

Ean,bm := (HQO)an,an − (HQO)bm,bm = 0 +O(V 2) (19)

is fulfilled. It follows from equation (17) that this happens
when at least one of the two conditions

ν = nΩ ±mΩp +O(V 2),

nΩ = mΩp +O(V 2), (20)

is fulfilled. At these avoided crossings the Floquet spec-
trum has quasi-degeneracies and as a consequence there
are transitions between the different Floquet states. As
it turns out below, this results in resonant peaks/dips
in the stationary averaged population difference P∞, cf.
Figure 2.

Since we are interested in describing the resonance line
shape for P∞, we have to determine the quasi-energies and
Floquet states around a resonance, i.e., around an avoided
crossing. For this, we use an approach which is perturba-
tive in V . The unperturbed Hamiltonian is diagonal and,
close to an avoided crossing, (nearly) degenerate. An ap-
propriate perturbative method is the Van Vleck perturba-
tion theory [7,23] suitable for Hamiltonians for which the
unperturbed spectrum has groups of (nearly) degenerate
eigenvalues, well separated in energy space. An example of
such a spectrum is shown in Figure 3. This method defines
a unitary transformation which transforms the Hamilto-
nian into an effective block-diagonal one. The effective
Hamiltonian then has the same eigenvalues as the orig-
inal Hamiltonian, with the quasi-degenerate eigenvalues
in one common block.

The effective Hamiltonian can be written as

Heff = eiSHQOe
−iS . (21)

In reference [7] it is shown how to obtain S systematically
for every order in the perturbation. The small parameter
is V/∆E2 (see Fig. 3). Eigenvalues within one block can be
arbitrarily close. This means that we can also use the ex-
pansion at resonance. We derive the expressions up to the

E

∆Ε

∆Ε2

1

Fig. 3. Typical energy spectrum suited for the Van Vleck per-
turbation theory: Different groups of (nearly) degenerate lev-
els of eigenenergies are well separated in energy (i.e., ∆E1 �
∆E2).

second order in the perturbation. Two different cases are
relevant: For the case when (HQO)an,an and (HQO)bm,bm

are not nearly degenerate we find

iS
(1)
an,bm =

Van,bm

Ean,bm
,

iS
(2)
an,bm =

∑
c,k

Van,ckVck,bm

2Ebm,an

(
1

Eck,an
+

1
Eck,bm

)
,

(22)

where the superscript indicates the order of perturba-
tion theory. For the second case when (HQO)an,an and
(HQO)bm,bm are nearly degenerate, we find iS

(1)
an,bm =

iS
(2)
an,bm = 0.
In turn, the matrix elements of the nth order term

H(n)
eff of the effective Hamiltonian can be calculated, again

for both cases. When (HQO)an,an and (HQO)bm,bm are not
nearly degenerate, we find (Heff)(1)an,bm = (Heff)(2)an,bm = 0.
For the second case, when (HQO)an,an and (HQO)bm,bm

are nearly degenerate, one finds

(Heff)(1)an,bm = Van,bm,

(Heff)(2)an,bm =
1
2

∑
c,k

Van,ckVck,bm

(
1

Ean,ck
+

1
Ebm,ck

)
.

(23)

Since the effective block-diagonal Hamiltonian conse-
quently only has 2 × 2 blocks, it is easy to diagonalize it.
To obtain the eigenvectors of the original Floquet Hamil-
tonian (see Eqs. (17, 18)), the inverse of the transforma-
tion defined in equation (21) has to be performed on the
eigenvectors. There is an infinite number of quasienergy
levels and Floquet states. However, because the eigenval-
ues εα and εα + n�Ω represent the same physical state,
only one of them has to be considered. Still there is an
infinite number of levels because the Hilbert space of the
HO Hamiltonian is infinite dimensional. Nevertheless, for
practical calculations, only the relevant HO levels have to
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Heff = �




ν
2

+ Ωp − Ω + W1 −∆1 0 0
−∆1 − ν

2
+ W2 0 0

0 0 − ν
2

+ Ωp + W3 0
0 0 0 ν

2
+ W4


 . (25)

be taken into account. When there is a resonance between
the states |e/g, 0, n〉 and |e/g, l, n+ k〉, then at least the
first l levels of the HO play a role. Higher levels can be
omitted if one is interested in low temperatures, which is
commonly the case, since for low temperatures their oc-
cupation number will be very small.

3.3 Line shape of the resonant peak/dip

To obtain the line shape of the resonant peak/dip in P∞,
we have to determine the stationary solution of equa-
tion (13). Depending on the number nmax of Floquet
states taken into consideration, this might be consider-
ably difficult. One facilitation might arise due to symme-
tries, i.e., elements of Lαβ,α′β′ being of the same size. An-
other possibility appropriate at low temperatures might be
to neglect some of the dissipative transition rates. More-
over, a further possible approximation can be applied for
ραβ(∞), if εα and εβ are not nearly-degenerate eigenval-
ues. In that case εα − εβ in equation (13) is much larger
than the coefficients Lαβα′β′ , since the coupling to the
Ohmic environment is assumed to be weak. This, in turn,
allows to make the partial secular approximation by set-
ting ραβ(∞) = 0. After the reduced density matrix in
the Floquet basis is known, it is straightforward to calcu-
late P∞.

3.4 Example: The first blue sideband

As an example we will derive an analytical expression
for the resonant dip at ν ≈ Ω − Ωp which is called the
first blue sideband. For this case, the matrix elements
(HQO)g0 n+1,g0 n+1 and (HQO)e1n,e1n are nearly degener-
ate, i.e.,

−ν/2 + (n+ 1)Ω ≈ ν/2 +Ωp + nΩ. (24)

As the resonance occurs between two states which differ
only by one oscillator quantum, we only take into account
one excited level of the oscillator. We expect that this
is a reasonable approximation for not too strong driving
and low temperatures. The validity of this approximation
will be checked against numerically exact results in the
end. The elements of the transformation matrix S follow
as Sg0 n+1,e1n = Se1n,g0 n+1 = 0, while the remaining el-
ements can be calculated straightforwardly using equa-
tion (22) and they will not be given here explicitly.

Since we include one HO excited energy level, we have
four physically different eigenstates. Hence, we can express
HQO in the basis {|e, 1,−1〉, |g, 0, 0〉, |g, 1, 0〉, |e, 0, 0〉}. Per-
forming the transformation defined in equation (21), we
obtain the effective Hamiltonian in this basis as

See equation (25) above.

The matrix elements are calculated using equation (23).
They read

∆1 =
∆ε0gs

[
Ω2 +Ω2

p + ν(−Ω +Ωp)
]

4ν(Ω − ν)ΩΩp(ν +Ωp)
,

W1 = −W2 =
ε20g

2

ν2Ωp
+

∆2g2

ν2(ν +Ωp)
+

∆2s2

8ν(ν2 −Ω2)
,

W3 = −W4 =
ε20g

2

ν2Ωp
− ∆2g2

ν2(ν −Ωp)
− ∆2s2

8ν(ν2 −Ω2)
. (26)

The eigenvalues of the Hamiltonian (25) are the relevant
quasi-energies, and they are readily obtained by diagonal-
ization as

ε1/2

�
= −ν

2
+
δ

2

(
1 ∓

√
1 +

∆2
1

δ2

)
−W1,

ε3
�

= −ν
2

+Ωp +W3,

ε4
�

=
ν

2
+W4. (27)

From these formulas it follows that δ = ν−Ω+Ωp+2W1 is
a measure of how far the system is off resonance. For δ = 0,
the quasi-energies ε1 and ε2 show an avoided crossing of
size �∆1. Note that equation (13) implies that ∆1 is the
Rabi frequency at the blue sideband.

The eigenvectors, which are the Floquet states, of the
4 × 4 effective block-diagonal matrix in equation (25) are
easily obtained by performing the corresponding inverse
transformation. We find, with tan θ = 2|∆1|/δ, the eigen-
states

|φ1〉 = e−iS [sin (θ/2)e−iΩt|e, 1〉 + cos (θ/2)|g, 0〉],
|φ2〉 = e−iS [cos (θ/2)e−iΩt|e, 1〉 − sin (θ/2)|g, 0〉],

|φ3/4〉 = e−iS |g/e, 1/0〉. (28)

We have used the inverse transformation of equation (10)
to illustrate the time-dependence explicitly. Next, we cal-
culate the rates given in equation (14) up to second order
in V .

The quasi-energies ε1 and ε2 are quasi-degenerate. To
be definite, we assume a partial secular approximation: We
set almost all off-diagonal elements of ρ to zero but keep
ρ12(∞) and ρ21(∞) = ρ∗12(∞) different from zero. This al-
lows to simplify the master equation (13). The stationary
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solutions are determined by the conditions

0 =
∑

β

Lαα,ββρββ(∞) + (Lαα,12 + Lαα,21)Re[ρ12(∞)],

0 = − i

�
(ε1 − ε2)ρ12(∞) +

∑
α

L12,ααραα(∞)

+ L12,12ρ12(∞) + L12,21ρ
∗
12(∞). (29)

It is most convenient to use the symmetry properties of
the corresponding rates which are specified for this par-
ticular example in the equations (A.1) in Appendix A.
In turn, there are eight independent rates associated to
all possible transitions. They are explicitly given in the
equations (A.2).

First we consider the rates exactly at resonance δ = 0.
Since then sin2(θ/2) = cos2(θ/2) = 1/2, all rates contain
a term which is of zeroth order in V . If we neglect the
small second order terms, we find

L22,44 = L11,44 = L33,22 = L33,11 = −L33,21

= L21,44 = N(�Ωp),
L22,33 = L11,33 = L44,22 = L44,11 = L44,21

= −L21,33 = N(−�Ωp),
L11,21 = L22,21 = L21,22 = L21,11

=
1
2
[N(�Ωp) −N(−�Ωp)],

L12,12 = −N(−�Ωp) −N(�Ωp). (30)

Solving equation (29) together with (30) finally yields

ρ11(∞) = ρ22(∞) =
N(−�Ωp)N(�Ωp)

[N(−�Ωp) +N(�Ωp)]2
,

ρ33(∞) =
N(�Ωp)2

[N(−�Ωp) +N(�Ωp)]2
,

ρ44(∞) =
N(−�Ωp)2

[N(−�Ωp) +N(�Ωp)]2
,

ρ12(∞) = 0.
(31)

Eventually, this gives the simple result at resonance, δ = 0,

P∞ = −ε0
ν

tanh
(

�Ωp

2kBT

)
+O

(
V 2
)
, (32)

which implies a complete inversion of population at low
temperatures! We will discuss the physics of this in Sec-
tion 3.5. Note that no further assumption on the temper-
ature was made while deriving this formula.

Next we will derive an expression for the peak shape
around the resonance. For this, we assume low temper-
atures, i.e., kBT/� � Ωp, Ω, ν. This allows us to set
N(�Ωp) = N(�Ω) = N(�ν) = 0. Far enough away from
resonance, it is appropriate to assume that ρ12(∞) ≈
ρ21(∞) ≈ 0, and sin (θ/2) ≈ θ/2. Thus, it follows
from equation (A.1) that there are only four independent
rates in this case, namely L44,22, L22,44, L44,11 and L11,44.

(b) (c)

-1

0

1

5 6 7

P∞

ε0
-1

0

1

5 6 7

P∞

ε0

-1

0

1

5 6 7

P∞

ε0

(a)

Fig. 4. P∞ vs. ε0 (in units of ∆) around the peak at ν = Ω −
Ωp. The solid lines are the analytical prediction (35) for (a) g =
0.05∆, (b) g = 0.2∆, (c) g = 0.4∆. The triangles are the results
of a Floquet-Bloch-Redfield simulation, cf. equation (13), with
one (upward triangles) and two (downward triangles) HO levels
taken into account. The circles in (b) are the results from a
QUAPI simulation with six HO levels (see text). We choose
s = 2∆, Ω = 10∆, κ = 0.014, kBT = 0.1�∆.

Within our approximations, we find that L22,44 = O(V 3).
So only three rates are relevant which read

L44,22 = 2 cos2(θ/2) ≈ 2,

L11,44 = 2Lq(ε1,4,0) cos2(θ/2) ≈ 8∆2g2Ω2
p

(ν3 − νΩ2
p)2

,

L44,11 = 2 sin2(θ/2) ≈ θ2/2 ≈ 2∆2
1/δ

2, (33)

where the quantity Lq is given in Appendix A. Note that
L44,22 
 L44,11, L11,44. In this limit we find for the asymp-
totic density matrix elements

ρ11(∞) =
L11,44

L11,44 + L44,11
,

ρ22(∞) = ρ33(∞) = 0,
ρ44(∞) = 1 − ρ11(∞), (34)

which gives the central result

P∞ =
ε0
ν

L11,44 − L44,11

L11,44 + L44,11
+O

(
V 2
)

� ε0
ν

(
1 − 2∆2

1ν
2(ν2 −Ω2

p)2

∆2
1ν

2(ν2 −Ω2
p)2 + 4∆2g2Ω2

pδ
2

)
.

(35)

A comparison between the result of this formula and dif-
ferent numerical results, including those of an exact nu-
merical ab-initio real-time QUAPI calculation [24–26], is
shown in Figure 4. For the QUAPI-simulations, we have
used the optimized parameters [26] ∆t = 0.23/∆,M = 12
andK = 1. Moreover, we have applied an exponential cut-
off for the Ohmic bath with a cut-off frequency ωc = 10∆
(since we are considering long-time stationary results, the
explicit shape of the cut-off is irrelevant). Note that the
picture of the TSS+HO being the central quantum sys-
tem which is coupled to an Ohmic environment is par-
ticularly suited for QUAPI since the coherent dynamics
of the central quantum system is treated exactly. A very
good agreement, even near resonance, is found among all
the used numerical schemes.
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3.5 Results and discussion

To get a qualitative understanding of the results it is im-
portant to realize how the rates Lαβ,α′β′ are formed. All
Floquet states are superpositions of the four unperturbed
states |g, 0〉, |g, 1〉, |e, 0〉, |e, 1〉. The rates Losc, Lq, Lq,osc

defined in equation (A.2) describe the time scales of the
transitions between the different unperturbed states. In
this discussion these will be called the basic transition
rates. If we want to calculate the rates Lαα′,ββ′ which
describe transitions between different Floquet states, we
have to multiply the basic rates by the square of the am-
plitudes in the superpositions. For example the Floquet
state |φ1〉 consists of an unperturbed state |e, 1〉 with am-
plitude sin(θ/2), and |g, 0〉 with amplitude cos(θ/2). The
rate L44,11 describing the dissipative transition from |φ1〉
to |φ4〉 has a term which is the basic transition rate from
|e, 1〉 to |e, 0〉 (Losc) multiplied by sin2(θ/2), and a term
which is the product of the basic transition rate from |g, 0〉
to |e, 0〉 (Lq) and cos2(θ/2). In this qualitative explana-
tion we can neglect the amplitudes of the other states in
|φ1〉 and |φ4〉 which are O(V 2).

Now we consider the rates at resonance. Here, the am-
plitudes sin(θ/2) and cos(θ/2) are equal and we only have
to consider the largest basic rate which is Losc. The domi-
nant transition from |φ1〉 to |φ4〉 is via the basic transition
from |e, 1〉 to |e, 0〉 and it is fast (both amplitude in the
superposition and rate Losc are of order one). The same
holds for the transitions between |φ2〉 to |φ4〉. There will
also be a transition between |φ3〉 and |φ1〉, |φ2〉 via the
basic transition between |g, 1〉 and |g, 0〉. Since only the
decay of the oscillator plays a role, the stationary state
is a thermally equilibrated mixture between |e/g, 1〉 and
|e/g, 0〉 which is described by equation (32).

Away from resonance, the amplitude sin(θ/2) becomes
small (∼ ∆1) implying that other basic transitions start to
play a role. The transition from |φ2〉 to |φ4〉 is still domi-
nated by the basic transition from |e, 1〉 to |e, 0〉 with large
amplitude cos(θ/2). Within our assumption of low temper-
atures used to derive equation (35), the state |φ2〉 is weakly
populated after long times. The same holds for |φ3〉. Be-
tween |φ1〉 and |φ4〉 two basic transitions are important.
The first is a transition from |e, 1〉 to |e, 0〉 with large rate
(i.e., fast) but low amplitude (sin(θ/2)) (i.e., rare). For low
temperatures, this rate describes transitions from |φ1〉 to
|φ4〉 and it dominates L44,11 in equation (33). The other
basic transition occurs via the unperturbed states |e, 0〉
and |g, 0〉. The basic rate Lq is small, but it has a large
amplitude (cos(θ/2)). For low temperatures this mecha-
nism causes transitions from |φ4〉 to |φ1〉 and it is the
dominant part of L11,44. The stationary state is described
by the ratio of the rates as described by equation (35).
Note that since both rates scale with g2 the final result
does not depend on g, for small g. For other resonances
we find a different eigenvalue splitting and the peak shape
will depend on g.

We will now try to give a more physical insight in
the nature of this resonance. First consider the case when
T = 0 and we are exactly on resonance. The driving in-
duces transitions from |g, 0〉 to |e, 1〉 while the direct cou-

pling of the HO to the environment will cause a fast decay
of the population from |e, 1〉 to |e, 0〉. This transition from
|g, 0〉 to |e, 0〉 via driving and decay has to compete with
the decay from |e, 0〉 to |g, 0〉, but the last process is much
slower because the TSS is not directly coupled to the en-
vironment. So all the population is in |e, 0〉 and there is a
complete inversion of population. For T �= 0 there will be
a thermal equilibrium between ground and excited state
of the oscillator.

When the system is not exactly at resonance the driv-
ing induced transitions are much slower ∝ g2 and the de-
cay of the oscillator is still fast. This means that the tran-
sition from |g, 0〉 to |e, 0〉 is slower than at resonance. The
time associated with the decay from |e, 0〉 to |g, 0〉 is also
∝ g2 and the ratio of the time scales of the two processes
gives the ratio of the populations of |e, 0〉 and |g, 0〉 (at
T = 0, for higher T the states |g/e, 1〉 are also populated).
This ratio is independent of g and so is P∞.

A similar analysis can be performed for the first red
sideband at ν = Ω + Ωp. At resonance it yields P∞ =
ε0
ν tanh( �Ωp

2kBT ) + O(V 2), which is very close to thermal
equilibrium for low T .

For the resonance at ν = Ωp, only the oscillator is
excited. After having traced it out, we expect just thermal
equilibrium given by P∞ = ε0

ν tanh( �ν
2kBT ).

4 Strong coupling: NIBA

In the complementary regime of large environmental cou-
pling and/or high temperatures it is convenient to employ
model (a), and it is appropriate to treat the system’s
dynamics within the noninteracting-blip approximation
(NIBA) [8]. The NIBA is non-perturbative in the cou-
pling α but perturbative in the tunneling splitting ∆.
It is a good approximation for sufficiently high temper-
atures and/or dissipative strength, or for symmetric sys-
tems. Within the NIBA and in the limit of large driving
frequencies Ω 
 ∆, one finds [9]

P∞ =
k−0 (0)
k+
0 (0)

. (36)

Here,

k−0 (0) = ∆2

∫ ∞

0

dth−(t) sin (ε0t)J0

(
2s
Ω

sin
Ωt

2

)
,

k+
0 (0) = ∆2

∫ ∞

0

dth+(t) cos (ε0t)J0

(
2s
Ω

sin
Ωt

2

)
, (37)

with J0 being the zeroth order Bessel function. Dissipative
effects of the environment are captured by the terms

h+(t) = e−Q′(t) cos[Q′′(t)],

h−(t) = e−Q′(t) sin[Q′′(t)]. (38)

Here, Q′(t) and Q′′(t) are the real and imaginary parts of
the bath correlation function

Q(t) =
∫ ∞

0

dω
J(ω)
ω2

cosh(ωβ/2) − cosh[ω(β/2 − it)]
sinh(ωβ/2)

.
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Fig. 5. P∞ vs. ε0 (in units of ∆). The solid line is the NIBA
prediction, while the circles are from a QUAPI simulation with
6 HO levels (g = 3∆, s = 4∆, Ω = 10∆, κ = 0.014, kBT =
0.5�∆, Ωp = 4∆). Inset (a): NIBA result for kBT = 2�∆. The
arrows indicates the first red sideband at ν = Ω+Ωp. Inset (b):
Q′(t) vs. t shows damped oscillations.

For the peaked spectral density given in equation (4) one
finds

Q′(t) = Q′
1(t) − e−Γt[Y1 cos(Ω̄pt) + Y2 sin(Ω̄pt)],

Q′′(t) = A1 − e−Γt[A1 cos(Ω̄pt) +A2 sin(Ω̄pt)]. (39)

Here, β = �/kBT, Γ = πκΩp, Ω̄2
p = Ω2

p − Γ 2 and

Q′
1(t) = Y1 + παΩ2

p

[
sinh(βΩ̄p)t

2CΩ̄p
+

sin(βΓ )t
2CΓ

−4Ω2
p

β

∞∑
n=1

1
νn

[e−νnt − 1] + t

(Ω2
p + ν2

n)2 − 4Γ 2ν2
n

]
, (40)

where νn = 2πn/β. Moreover, C = cosh(βΩ̄p) − cos(βΓ ),
CY1/2 = ∓A2/1 sinh (βΩ̄p)−A1/2 sin (βΓ ), A2 = απ(Γ 2−
Ω̄2

p)/(2ΓΩ̄p), A1 = πα. As follows from equation (39),
Q′ and Q′′ display damped oscillations with frequency Ω̄p

(cf. Fig. 5b) which are not present for a pure Ohmic spec-
trum. It is the interplay between these oscillations and the
driving field which induces the extra resonances in P∞.

To proceed, we rewrite the kernels k±0 (0) in a more
convenient form. In the integrand of equation (37) the
functions cos[Q′′(t)], sin[Q′′(t)] and e−Q′(t)+Q′

1(t) oscillate
with frequency Ω̄p and we can expand them as

cos[Q′′(t)] =
∞∑

m=−∞

[
Dm cos(mΩ̄pt) + Em sin(mΩ̄pt)

]
,

sin[Q′′(t)] =
∞∑

m=−∞

[
Fm cos(mΩ̄pt) +Gm sin(mΩ̄pt)

]
,

e−Q′(t)+Q′
1(t) =

∞∑
m=−∞

[
Hm cos(mΩ̄pt) +Km sin(mΩ̄pt)

]
.

(41)

The coefficients Dm, Em, Fm, Gm, Hm and Km are time
dependent and they are given in Appendix B. Inserting

these expansions into equation (37), and also using the
Fourier representation of J0

(
2s
Ω sin Ωt

2

)
, we find

k±0 (0) =
∞∑

m=−∞

∞∑
n=−∞

∆2

∫ ∞

0

dte−Q′
1(t)f±

mn(t). (42)

Here, εmn = ε0 −mΩ̄p − nΩ, and

f±
mn(t) =

Re
Im
[
c±mn(t) cos(εmnt) ± c∓mn(t) sin(εmnt)

]
,

c+mn = J2
n

( s
Ω

)
Jm(e−Γtω1) cos(mφ)(−i)me−iA1 ,

c−mn = J2
n

( s
Ω

)
Jm(e−Γtω1) sin(mφ)(−i)me−iA1 , (43)

with Jn being a Bessel function of order n, and

ω1 =
√

(A1 − iY1)2 + (A2 − iY2)2,

tanφ = −A2 − iY2

A1 − iY1
. (44)

Thus, from equation (43), we expect resonances when
εnm = 0.

In the limit Γ/Ωp � 1 and for not too large T (i.e.,
cos(βΓ ) � cosh(βΩp)), we find that

tan(mφ) ≈ i tanh
(
mβΩp

2

)
. (45)

Inserting this into equation (43), we obtain

i tanh
(
mβΩp

2

)
c+mn = c−mn. (46)

If the environmental mode is enough localized (i.e., the
integrand of Eq. (37) is only damped after several oscilla-
tions), we expect that the sum in equation (42) is domi-
nated by the coefficient of cos εnmt if εmn = 0. This means
that

f+
mn(t) ≈ Re[c+mn(t)]

f−
mn(t) ≈ tanh

(
mβΩp

2

)
Re[c+mn(t)], (47)

which leads to

P∞ = tanh
(
mβΩp

2

)
. (48)

Without driving we only have terms with n = 0 and
εm0 = 0 implies that ε0 = mΩp. In that case equation (48)
gives the NIBA thermal equilibrium value. Hence, in order
to find resonances we need to apply driving. For “conven-
tional” resonances at ε0 = nΩ, we put m to zero and
we find P∞ ≈ 0, as predicted for unstructured environ-
ments [17,27]. Finally, for ε0 = nΩ ± mΩp, we recover
P∞ ≈ ± tanh(mβΩp/2), as was also found within the
Floquet-Born-Markov approach, cf. (32). Results of a nu-
merical evaluation of P∞ are shown in Figure 5, using the
NIBA result (43), as well as the exact ab-initio real-time
QUAPI method [24–26]. Resonance dips are observed at
ε0 = Ω, ε0 = Ω −Ωp and ε0 = Ω − 2Ωp. For kBT ∼ �Ωp,
we also find the first red sideband at ε0 = Ω + Ωp, see
inset (a).
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P (n)
∞ (ε0) =

ε0ε
2
n∆2

0(ε
2
0 + ∆2

0 − ε2n)
JOhm(ϑ0)

ϑ0
+ ε2

0|εn|∆2
n(ε2n + ∆2

n − ε2
0)

JOhm(ϑn)

ϑn

∆2
0ε

2
n(ε2

0 + ∆2
0 − ε2n)JOhm(ϑ0) coth

�ϑ0

2kBT
− ∆2

nε2
0(ε

2
n + ∆2

n − ε2
0)JOhm(ϑn) coth

�ϑn

2kBT

. (51)

5 Limit Ωp � ν

In the limit when the frequency Ωp of the HO is much
larger than the effective TSS level splitting ν, the peak in
the spectral density at Ωp acts as a high-frequency cut-
off for an effective Ohmic bath, see equation (4). In other
words, the oscillations in the correlation functions, see Sec-
tion 4 which occur on a time-scale Ω−1

p are very fast and
can be averaged out when only the long-time dynamics
is of interest and short-time effects are not considered.
In this limit, the standard driven and Ohmically damped
spin-boson model [8,9] is recovered. In the regime of weak
damping α � 1, the stationary population difference P∞
has been determined within the assumption of large driv-
ing frequencies Ω 
 ∆, ... upon using analytic real-time
path integral methods in reference [27]. In this Section, we
use this high-frequency approximation of reference [27] as
a starting point, and derive a closed simple analytic ex-
pression for the peak shape of the “common” multi-photon
resonance. Most importantly, we find the scaling of the
width of the n-photon resonance as the nth Bessel func-
tion Jn(s/Ω). This scaling behavior has been observed
experimentally in superconducting flux qubit devices [16].

The central issue in finding a closed analytic expression
for P∞ is to find the roots ϑn of the pole equation [27]

+∞∏
n=−∞

(
ε2n − ϑ2

)
+

+∞∑
n=0

∆2
n

+∞∏
m=−∞,m �=n

(
ε2m − ϑ2

)
= 0. (49)

Here, εn = ε0 − nΩ is the photon-induced bias and
∆n = |Jn(s/Ω)|∆ is the field-dressed tunneling splitting
of the TSS, where Jn(x) is the nth ordinary Bessel func-
tion. Considering the n-photon resonance, we numerically
find that, up to extremely high numerical precision, the
roots of equation (49) are given by

ϑ0 =
√
ε20 +∆2

0,

ϑn�=0 =
√
ε2n +∆2

n,

ϑk �=n,0 = εk. (50)

Plugging equations (50) in the expressions for P∞ given
in reference [27], see equations (6) and (7) therein, we
find a closed expression for the lineshape of the n-photon
resonance to be

See equation (51) above.

This result can be simplified upon observing that the sec-
ond term in the numerator is small if the driving is not too
large, since then ∆2

n � ∆2
0. Moreover, we are interested

in the regime ε0 
 ∆ which is the saturation regime im-
plying that ν ≈ ε0 and at low temperatures. Then, away
from the resonance point at nΩ ≈ ε0, the second term

in the denominator in equation (51) can be neglected and
one recovers the standard result, if one uses that ∆0 ≈ ∆
which is fulfilled for weak driving. It reads

P (n)
∞ (ε0) =

ε0√
ε20 +∆2

tanh

√
ε20 +∆2

2kBT
, (52)

which gives the correct result away from any n-photon
resonance. For the case at the n-photon resonance at nΩ ≈
ε0, one finds a Lorentzian line shape, i.e.,

P (n)
∞ (ε0) =

∆2
0(ε0 − nΩ)2

∆2
0(ε0 − nΩ)2 + 2ε20∆2

nkBT/�
, (53)

where we have expanded the second coth term in the de-
nominator (see Eq. (51)) up to lowest order in the argu-
ment, which is appropriate since ϑn is small at resonance
(and at low temperature). The linewidth of the Lorentzian
peak can be calculated as the full width at half maximum
(FWHM)

∆ε(n) = 2

√
2nΩ

(
∆n

∆0

)2
kBT

�
+
(
∆n

∆0

)4(
kBT

�

)2

.

(54)
Note that this result obtained from the high-frequency
approximation is independent of the damping constant.
Moreover, the leading term is the first term under the
square root in equation (54). Note furthermore that for the
case of infinitesimal driving, the FWHM is not correctly
reproduced by equation (54) since it would approach zero.
However, as it is known from NMR within a treatment in
terms of the Bloch equation, in this case, the FWHM is
dominated by the dephasing [17], i.e.,

∆ε
(1)
Bloch = 2

√
Γ 2

φ +Ω2
RΓφ/ΓR, (55)

where ΓR = πα coth(�ν/2kBT )∆2/ν is the relaxation rate
and Γφ = ΓR/2 + 2πα(ε20/ν2)kBT/� [8]. Both rates are of
first order in the damping strength α. Moreover,ΩR is the
(single-photon) Rabi frequency. Hence, we have to include
the dephasing rate Γ 2

φ in equation (53), since it cannot be
reproduced by our weak-coupling approach which is only
of first order in α. This finally yields in leading order in
the driving strength

∆ε(n) = 2

√
Γ 2

φ +
(
∆n

∆0

)2

2nΩ
kBT

�
. (56)

As follows from equation (56), the FWHM of the n-photon
resonance scales with the nth ordinary Bessel function,
i.e., ∆ε(n) ∼ Jn(s/Ω) as also confirmed by experimental
measurements [16].
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L11,22 = L22,11 = L33,44 = L44,33 = 0, L11,11 = −(L33,11 + L44,11),

L22,22 = −(L33,22 + L44,22), L33,33 = −(L11,33 + L44,33),

L44,44 = −(L11,44 + L22,44), L12,12 = (L22,22 + L11,11)/2, L11,33 = L44,22 ,

L22,33 = L44,11, L33,22 = L11,44, L33,11 = L22,44, L22,21 = L21,11,

L11,21 = L21,22, L44,21 = −L21,33, L33,21 = −L21,44, L22,12 = L22,21,

L11,12 = L11,21, L44,12 = L44,21, L33,21 = L33,12, L12,21 = 0. A.1

L44,22 = 2Losc(ε4,2,−1) cos2
(

θ

2

)
+ 2Lq(ε4,2,0) sin2

(
θ

2

)
− Lq,osc(ε4,2,−1) sin θ,

L22,44 = 2Losc(ε2,4,1) cos2
(

θ

2

)
+ 2Lq(ε2,4,0) sin2

(
θ

2

)
− Lq,osc(ε2,4,1) sin θ,

L44,11 = 2Losc(ε4,1,−1) sin2

(
θ

2

)
+ 2Lq(ε4,1,0) cos2

(
θ

2

)
+ Lq,osc(ε4,1,−1) sin θ,

L11,44 = 2Losc(ε1,4,1) sin2

(
θ

2

)
+ 2Lq(ε1,4,0) cos2

(
θ

2

)
+ Lq,osc(ε1,4,1) sin θ,

L21,22 =
1

2
(Losc(ε3,2,0) − Lq(ε3,2,−1) − Losc(ε4,2,−1) + Lq(ε4,2,0)) sin θ +

1

2
(Lq,osc(ε3,2,0) − Lq,osc(ε4,2,−1)) cos θ,

L21,11 =
1

2
(Losc(ε3,1,0) − Lq(ε3,1,−1) − Losc(ε4,1,−1) + Lq(ε4,1,0)) sin θ +

1

2
(Lq,osc(ε3,1,0) − Lq,osc(ε4,1,−1)) cos θ,

L21,44 =
1

2
(Losc(ε1,4,1) + Losc(ε2,4,1) − Lq(ε1,4,0) − Lq(ε2,4,0)) sin θ +

1

2
(Lq,osc(ε1,4,1) + Lq,osc(ε2,4,1)) cos θ,

L21,33 =
1

2
(Lq(ε1,3,1) + Lq(ε2,3,1) − Losc(ε1,3,0) − Losc(ε2,3,0)) sin θ − 1

2
(Lq,osc(ε1,3,0) + Lq,osc(ε2,3,0)) cos θ,

6 Conclusions

In conclusion we have investigated the problem of a quan-
tum mechanical driven two-state system being coupled to
a structured environment which has a localized mode at
a frequency Ωp but behaves Ohmically at low frequencies.
We have studied two complementary parameter regimes of
weak and strong coupling to the environment. The inter-
play of the driving and the localized mode gives additional
features like resonant peaks/dips in the asymptotic aver-
aged population difference P∞. We have calculated analyt-
ically the lineshape of the resonances in various parameter
regimes and have obtained simple closed expressions for
the particular example of the first blue sideband. We also
include the discussion of how the results are generalized
for any sideband. Moreover, we have elaborated the limit
when the localized mode acts as a high-frequency cut-off.
Then, the full width at half maximum of the n-photon
resonance has been shown to scale with the nth ordinary
Bessel function.

Our model finds as well applications in the field of
cavity quantum electrodynamics (CQED) with solid state
structures [28]. Most interestingly, the strong coupling
limit of CQED could be reached in superconducting elec-
trical circuits, with perspective applications ahead.

Finally, we note that a related experiment has been
reported recently by Wallraff et al. [29]. There, a qubit
was realized in the form of a Cooper pair box which cou-
ples to a single mode of a cavity which is damped. The
properties of the TSS-HO were probed spectroscopically

by measuring the transmission of the resonator. In other
words, a driven HO was considered while the TSS was
kept static. In contrast to that system, here, the TSS was
time-dependent while the HO is treated as static.

We thank P. Bertet, I. Chiorescu and H. Mooij for discussions.
This work has been supported by the Universitätsstiftung
Hans Vielberth and the Dutch NWO/FOM.

Appendix A: Symmetry properties
for the dissipative rates for the first blue
sideband

In order to evaluate the stationary averaged population
difference P∞, the rate coefficients Lαβ,α′β′ have to be
determined explicitly. For the example of the resonance
at ν ≈ Ω − Ωp (first blue sideband) considered in this
work, we find that the rate coefficients fulfill the symmetry
relations

See equation (A.1) above.

As a consequence, there are eight independent rates
given by

See equation above,
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with

Lq(εklm) = 〈e, 1, 0|eiSXe−iS |g, 1, 0〉2N(εklm)

= 〈e, 0, 0|eiSXe−iS |g, 0, 0〉2N(εklm)

=
4g2∆2Ω2

pN(εklm)
ν2(ν2 −Ω2

p)2
,

Losc(εklm) = 〈g, 1, 0|eiSXe−iS |g, 0, 0〉2N(εklm)

= 〈e, 1, 0|eiSXe−iS |e, 0, 0〉2N(εklm)

=

(
4g2(∆2(ν2 − 2Ω2

p) − (ν2 −Ω2
p)2)

Ω2
p(ν2 −Ω2

p)2
+ 1

)

×N(εklm),

Lq,osc(εklm) = −2〈e, 1,−1|eiSXe−iS|g, 1, 0〉

× 〈g, 1, 0|eiSXe−iS|g, 0, 0〉N(εklm)

= 2〈g, 0, 1|eiSXe−iS|e, 0, 0〉

× 〈e, 0, 0|eiSXe−iS|e, 1, 0〉N(εklm)

=
∆ε0gs((Ω +Ωp)2 + 2Ω2

p + ν(−Ω +Ωp))N(εklm)
2ν(ν −Ω)Ω(ν −Ω −Ωp)Ωp(ν +Ωp)

,

N(εklm) = N(εk − εl +mΩ). (A.2)

Note that Losc is the rate containing the zeroth order
term in g and s. It is related to the transition between two
states differing by one oscillator quantum. This decay is of
zeroth order (hence fast) because the oscillator is coupled
directly to the environment. Moreover, Lq gives the rate
for transitions between the excited and ground state of
the TSS with the HO remaining in the same state, and
Lq,osc is related to the transition where both the qubit
and the oscillator exchange energy with the environment.
Note that this transition is induced by the driving and
involves one photon.

Appendix B: Coefficients for the kernels k±
0 (0)

In Section 4, we have introduced an expansion of the
oscillating functions given in equation (41). In this ap-
pendix we summarize the corresponding coefficients for
completeness.

For the expansion of cos[Q′′(t)], we find

D2m+1 = (−1)m sin (A1)J2m+1(A) cos [(2m+ 1)X ],
D2m = (−1)m cos (A1)J2m(A) cos (2mX),

E2m+1 = (−1)m sin (A1)J2m+1(A) sin [(2m+ 1)X ],
E2m = (−1)m cos (A1)J2m(A) sin (2mX), (B.1)

where we have introduced

A = e−Γt
√
A2

1 +A2
2,

sinX = A2/
√
A2

1 +A2
2. (B.2)

In the same way, the expansion of sin[Q′′(t)] gives

F2m+1 = (−1)m+1 cos (A1)J2m+1(A) cos [(2m+ 1)X ],
F2m = (−1)m sin (A1)J2m(A) cos [2mX ],

G2m+1 = (−1)m+1 cos (A1)J2m+1(A) sin ([2m+ 1)X ],
G2m = (−1)m sin (A1)J2m(A) sin [2mX ]. (B.3)

Finally, we find for the coefficients of exp[Q(t) −Q1(t)]

Hm = Im(Y ) cos (mV ),
Km = Im(Y ) sin (mV ), (B.4)

where we have introduced

Y = e−Γt
√
Y 2

1 + Y 2
2 ,

tanV =
Y2

Y1
. (B.5)

Here, Im is the modified Bessel function of the first kind
of order m.
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